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ANALYSIS OF AN ENGINE–MOUNT SYSTEM WITH
TIME-DEPENDENT MASS AND VELOCITY
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In this paper a formulation of a dynamic model of a flexibly supported engine is
presented, in which the contribution of rotating and reciprocating parts are taken into
account with accuracy. This dynamic model contains a mass matrix and a velocity matrix
as periodic functions of time. The derivation of these equations of motion on the basis of
Lagrange’s equations is presented.

Using the formulated dynamic model, an analysis of parametric resonance phenomena
for engine–mount systems is conducted. Numerical examples demonstrate the possibility
of dynamic instability in some cases.

As a particular case, flexibly supported rotor systems can be treated as well using the
developed dynamic model.
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1. INTRODUCTION

The problem of self-excited vibrations (or dynamic instability) exists in many engineering
applications. In the mathematical sense, this problem is usually associated with linear
differential systems having periodic coefficients. Mechanical systems which are described
by such type of equations are called linear parametrically excited systems. A significant
portion of bibliography devoted to such systems can be found; see, e.g., reference [11].

In regards to rotating shaft systems possessing unequal rigidities, the problem of
self-excited vibrations is widely considered; see, e.g., references [6, 4]. Here the term
‘‘unequal rigidity’’ means unequal flexural rigidity of the shaft.

However, such a factor as asymmetric mass distribution in a rigid shaft appears to be
less studied. This factor may also induce self-excited vibrations. Here, by ‘‘asymmetric
mass distribution’’ is implied the unequal principal mass moments of inertia in the plane
of the shaft’s cross-section. This factor provides a time varying contribution to the system
mass matrix. An example of such shaft systems which can exhibit self-excited vibrations
will be given in this study.

For such mechanical systems as piston engines, there will be an additional time-varying
factor due to the piston reciprocating motion. An analysis of instability for some examples
of engine–mount systems will also be given in this paper.

The application of vibration mounts (isolators) for piston engines is quite a common
practice [12, 5]. Models of engine–mount systems described in the literature traditionally
have constant matrices; i.e., mass M, stiffness K and viscous damping matrix C. For
example, a model considered in reference [4], represented the engine as a rigid body with
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six degrees of freedom which is mounted on elastic isolators. The six natural frequencies
and modes of this system were analyzed.

In references [14, 3] the authors described a technique which is aimed at the minimization
of forces transmitted through engine mounts, in which the engine was also modelled as
a rigid body subjected to periodic loadings. Mounts were assumed to be viscously damped;
i.e., a dashpot element was present in parallel to a linear elastic element. The formulated
equation of motion contained three constant (6×6) matrices M, K and C. In other words,
a coupled system of six differential equations with constant coefficients was considered.

The application of the finite element procedure (see, e.g., reference [2]) to engine–mount
systems leads to the formulation of the equation of motion which contains constant mass
and stiffness matrices, because rotational and moving parts traditionally contribute only
to the right side of equations of motion; i.e., to the loading functions.

Some finite element packages (see, e.g., reference [1]) have features that allow the
treatment of engine–mount systems; however, the effects of rotating and reciprocating
parts on the inertia characteristics of the system are not included.

Free and/or forced vibration responses of an engine–mount model are used to evaluate
the performance of the engine–mount system, and for further consideration of
optimization problems, where the response of the system is utilized as an input
information. The accurate prediction of the free and/or forced responses is therefore
necessary to provide reliable input information for the optimization problems.

There appear to be no attempts reported in the literature which accurately treat an
internal combustion engine–mount system as a system consisting of several rotating and
reciprocating rigid bodies.

Note that a system with constant matrices M, K and C in the equation of motion leads
to the eigenvalue problem which yields the eigenvalues with the negative real parts (or zero
parts for elastic mounts): hence the problem of instability does not arise. The system is
stable, because the homogeneous solutions are decaying in the case of a damped system,
or bounded for an undamped system. However when a system of differential equations
with time-dependent, periodic coefficients is considered such phenomena as parametric
resonance [7] (i.e., dynamic instability) can occur. In this case, homogeneous solutions can
be unbounded. This is the essential difference between the model with constant matrices
and the model when the time-variations of the inertia properties are included.

An analysis of steady state responses X(t) of an engine–mount system described by the
equation

M(t)X� (t)+D(t)X� (t)+KX(t)=F(t) (1)

is presented in reference [10]. Here matrices M(t), D(t) are T-periodic (6×6) mass and
velocity matrices, the forcing vector function F(t) is also T-periodic and the stiffness matrix
K is assumed to be constant. A comparison of two models is given in reference [10] in terms
of steady state responses. The second model is obtained from equation (1) by dropping
the time-dependent components in matrices M(t) and D(t). It was obtained that in many
cases when the time-dependent components are small in comparison with the constant
components in matrices M and D, the difference in steady state responses betwen these
two models is negligible; i.e., one can use an M, D-constant model. However, in the case
of crankshafts with asymmetric mass distribution (in terms of moments of inertia), or
significant contribution of the reciprocating parts (pistons), the use of the M, D-constant
model may yield a different response [10]. This is the case in which it is important to include
time-varying components generated by crankshaft rotation and by reciprocating pistons.

In this paper, a formulation of a dynamic model of an engine–mount system will be
presented. In this dynamic model the contribution of rotating and reciprocating parts will
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be taken into account which leads to the formulation of a mass matrix and a velocity
matrix (i.e., the matrix coefficient at the velocity vector) as periodic functions of time.
Based on the developed dynamic model, an investigation of the problem of dynamic
instability for an engine–mount system will be conducted.

It should be noted that the models of an engine–mount system used in references
[3, 4, 14] are non-parametrically excited models, and they can be deduced from the model
which is developed in this paper by neglecting certain components in the mass and velocity
matrices.

2. DERIVATION OF EQUATIONS OF MOTION

The system which is under consideration consists of the following rigid bodies: (1) body
A, the engine framework (including all the non-moving parts of the engine) with mass mA

and tensor of moments of inertia JA taken at the mass centre (point A in Figure 1); (2)
body B, the crankshaft with the mass mB and tensor of moments of inertia JB taken at
the mass centre of the crankshaft (point B); (3) the pistons, each with the mass mpi , i=1,
N. The connecting rods are not included, because their mass is assumed to be distributed
between the crankshaft and the pistons. It is a customary assumption [12] to distribute the
mass of the connecting rod mcr into two concentrated masses m1, m2 using the relations

m1L1 =m2L2, m1 +m2 =mcr ,

where L1 is the distance from the axis of the crank joint to the centre of mass of the
connecting rod, and L2 is the distance from the axis of the piston joint to the centre of
mass of the connecting rod.

One can introduce the following generalized co-ordinates for the system: displacements
u1A , u2A and u3A of the body A mass centre in a ground-based system of co-ordinates e1, e2, e3

(Figure 1) and angular rotations f1, f2, f3 about axes e1, e2, e3 respectively. The angular
rotations are presumed to be very small, so that they can play the role of generalized
co-ordinates [8].

The angular speed of the crankshaft in rotation about axis b–b is presumed to be
constant (v) with respect to the ground-based system of co-ordinates e1, e2, e3.

One can begin [10] with a derivation of the kinetic energy of the system. For the body
A, it will be

TA = 1
2mAv2

A + 1
2vA · JA · vA , (2)

where the second term is the kinetic energy of rotational motion about the mass centre
(point A), and is calculated as a double scalar product of the vector of angular velocity

Figure 1. A schematic view of the engine framework and crankshaft.
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and tensor of moments of inertia. The vector of angular velocity is expressed in terms of
the generalized co-ordinates as

vA =f� 1e1 +f� 2e2 +f� 3e3.

Tensor JA will also be expressed in terms of projections on to the axes parallel to e1, e2, e3,
and therefore will be time-dependent. However, assuming that the angles f1, f2, f3 are
very small, it will be assumed that JA is constant.

Expression (2) can be rewritten as

TA = 1
2mAv2

A + 1
2[f� 1, f� 2, f� 3]JA [f� 1, f� 2, f� 3]T,

where JA is the matrix of components of tensor JA .
The kinetic energy of body B (the crankshaft) will be

TB = 1
2mBv2

B + 1
2vB · JB · vB , (3)

where the second term is the kinetic energy of rotational motion about the mass centre
of body B. The vector of angular velocity is expressed in terms of generalized co-ordinates
as

vB =ve1 +f� 2e2 +f� 3e3.

The tensor JB is time-dependent when expressed in terms of ground-basis vectors e1, e2, e3.
Consider a set of basis vectors g1, g2, g3, rigidly connected with the body B, in which the
tensor of moments of inertia JB has constant components

JB = JB0
ij gigj , (4)

where summation on repeated indices is assumed. Also introduce an auxiliary rotating set
of basis vectors i1, i2, i3, which has the angular velocity vector ve1. These basis vectors
i1, i2, i3 can be expressed in terms of the ground basis vectors as

&i1i2i3'= &100 0
cos g

−sin g

0
sin g

cos g'&e1

e2

e3' ,

where g=vt+f0 (angle of crankshaft rotation).
Given the angular displacements f1, f2, f3 at a given moment of time t, the basis vectors

g1, g2, g3 rigidly connected with the body B can be expressed in terms of the ground-basis
vectors as

&g1

g2

g3'= 8&100 0
cos g

−sin g

0
sin g

cos g'+ & 0
f2 sin g−f3 cos g

f3 sin g+f2 cos g

f3

−f1 sin g

−f1 cos g

−f2

f1 cos g

−f1 sin g'9&e1

e2

e3'
or, introducing notation T for the first matrix term and F for the second, one obtains

gi =(Tik +Fik )ek =Rikek , i, k=1, 2, 3, (5)

where summation on repeated indices is assumed. Matrix R will be called the
transformation matrix.
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Note that components of matrix T in equation (5) are functions of g only, whereas
components Fik are functions of angular co-ordinates f1, f2, f3 as well as of g. Thus the
basis g1, g2, g3 is related to the basis e1, e2, e3 through matrix R:

R= & 1
f2 sin g−f3 cos g

f3 sin g+f2 cos g

f3

cos g−f1 sin g

−sin g−f1 cos g

−f2

sin g+f1 cos g

cos g−f1 sin g' .

The details of the derivation of the matrix R are presented in Appendix A. The
contribution of components containing f1 will be neglected, because the angular
displacements are assumed to be very small (=fi =W 1, i=1, 2, 3). Note that comparing the
C-norms [9] of these functions, one obtains

>f1 cos g>c = =f1 sin g>c = =f1=W >cos g>c = >sin g>c =1, gW[0, 2p].

Thus the final form of the transformation matrix R will be further assumed as

R= & 1
f2 sin g−f3 cos g

f3 sin g+f2 cos g

f3

cos g

−sin g

−f2

sin g

cos g' .

Substituting equation (5) into equation (4), one obtains

JB = JB0
ij RikekRjmem =RikJB0

ij Rjmekem . (6)

Using the matrix form, expression (6) will correspond to

JB =RTJB0R. (7)

Note that matrix JB is a function of time and, strictly speaking, of angular co-ordinates
f1, f2, f3, because matrix R is a function of these variables.

Now one can rewrite the expression for the kinetic energy of the body B in matrix form.
Namely,

TB = 1
2mBv2

B + 1
2[v, f� 2, f� 3]JB (t)[v, f� 2, f� 3]T. (8)

It is left to express the velocity vB in terms of the generalized co-ordinates. The following
vector relation holds (Figure 2):

rB = rA + rAD + rDB , (9)

Figure 2. The determination of the velocity vector vB .
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where

rA = u1Ae1 + u2Ae2 + u3Ae3.

Vectors rAD and rDB are represented in the co-ordinate system p1, p2, p3 (which is rigidly
connected to body A; Figure 1) as

rAD = s1p1 + s2p2 + s3p3, rDB = r cos g p2 + r sin g p3,

where point D is the projection of mass centre B on the axis of shaft rotation, and
quantities s1, s2, s3 are constant and assumed to be known.

Differentiating equation (9), one obtains

vB = vA + ṙAD + ṙDB . (10)

Differentiation of rAD yields

ṙAD =vA × rAD =(f� 2s3 −f� 3s2)e1 + (f� 3s1 −f� 1s3)e2 + (−f� 2s1 +f� 1s2)e3,

where vector rAD in the above multiplication was represented by the components s1, s2, s3

in the basis e1, e2, e3 instead of basis p1, p2, p3 (the angles f1, f2, f3 are assumed to be small).
Differentiation of rDB yields

ṙDB =vA × rDB − rv sin gp2 + rv cos gp3.

Neglecting the first term and replacing basis vectors p2, p3 by e2, e3 (angles f1, f2, f3 are
assumed to be small) one obtains

ṙDB =−rv sin ge2 + rv cos ge3.

Thus from equation (10) the velocity of the mass centre of body B will be

vB =(u̇1A +f� 2s3 −f� 3s2)e1 + (u̇2A +f� 3s1 −f� 1s3 − rv sin g)e2

+ (u̇3A −f� 2s1 +f� 1s2 + rv cos g)e3

and the kinetic energy of linear motion of body B will be

TBl = 1
2mB ([u̇1A +f� 2s3 −f� 3s2]2 + [u̇2A +f� 3s1 −f� 1s3 − rv sin g]2

+ [u̇3A −f� 2s1 +f� 1s2 + rv cos g]2).

Now consider the determination of the kinetic energy of the pistons (Figure 3). It will
be presumed that pistons are moving in the direction of p3 (Figure 1); i.e., the engine
cylinders are parallel to each other. The derivation will be shown for one cylinder and then
generalized for the case of several cylinders.

Figure 3. The determination of the kinetic energy of the pistons.
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The velocity vector of point G (mass centre of the piston) can be calculated as

vG = vA +vA × rAG + vGrp3, (11)

where vGr is the velocity of linear motion of the piston with respect to the cylinder along
the vertical direction. One can find that this velocity vGr will satisfy the relation

vGr = lv sin gp tan d+ lv cos gp , (12)

where gp = g+ gp0, gp0 is the initial phase of the piston, and

sin d=0 l
l21 cos gp .

The radius vector rAG can be represented as

rAG = rAD' + rD'G =(s1 + f)p1 + s2p2 + (s3 + l sin gp + l2 cos d)p3, (13)

where f is the offset of the cylinder line (point D') with respect to point D. We introduce
the notation s1 + f= a1, which will be used below.

Upon the calculation of vA × rAG in equation (11), vector rAG is represented by the same
components as in equation (13), but in the basis e1, e2, e3 instead of basis p1, p2, p3 (the
assumption about the smallness of angles f1, f2, f3 is used) and analogously the term vGrp3

is replaced by vGre3.
Substituting relations (13) and (12) in equation (11) and taking into account the

above-mentioned replacements, one obtains

vG =(ẋA +f� 2(s3 + l sin gp + l2 cos d)−s2f� 3)e1

+ (ẏA −f� 1(s3 + l sin gp + l2 cos d)+a1f� 3)e2

+ (żA + lv sin gp tan d+ lv cos gp + s2f� 1 − a1f� 2)e3.

Now, considering the case of N cylinders, we introduce the following auxiliary notations
which will be used later:

Mp = s
N

i=1

mpi , hi = s3 + l sin gpi + l2 cos di , di = l cos gpiv− l2 sin did� i ,

A= s
N

i=1

mpihi , B= s
N

i=1

mpidi , P= s
N

i=1

mpih2
i , E= s

N

i=1

mpihidi ,

S= s
N

i=1

mpia1i , U= s
N

i=1

mpia2
1i , W= s

N

i=1

mpia1ihi , L= s
N

i=1

mpia1idi , (14)

where mpi is the mass of the ith cylinder. The kinetic energy of all pistons will be

Tp = 1
2 s

N

i=1

mpi [(ẋA +f� 2hi − s2f� 3)2 + (ẏA −f� 1hi + a1if� 3)2

+ (żA + s2f� 1 − a1if� 2 + lv sin gpi tan di + lv cos gpi )2], (15)

where the hi were defined in equation (14).
The total kinetic energy of the system will be

T=TA +TB +Tp ,
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where TA , TB and Tp are given by equations (2), (3) and (15) respectively. We introduce
a new notation for the generalized co-ordinates; namely,

q1 = u1A , q2 = u2A , q3 = u3A , q4 =f1, q5 =f2, q6 =f3.

Using Lagrange’s equations [8]:

d
dt 01T

1q̇j1−1T
1qj

=Qj , j=1, 6, (16)

one obtains the following equation in matrix form:

M(t)q̈+D(t)q̇=Q(t), (17)

where the inertia matrix M(t) is symmetric, time-dependent and has components Mij

defined by

M11 =mA +mB +Mp , M12 =0, M13 =0,

M14 =0, M15 =mBs3 +A, M16 =−mBs2 −Mps2,

M22 =mA +mB +Mp , M23 =0,

M24 =−mBs3 −A, M25 =0, M26 =mBs1 +S, M33 =mA +mB +Mp ,

M34 =mBs2 +Mps2, M35 =−mBs1 −S, M36 =0,

M44 = JA
11 +mB (s2

3 + s2
2 )+P+Mps2

2 ,

M45 = JA
12 −mBs1s2 −Ss2, M46 = JA

13 −mBs1s3 −W,

M55 = JA
22 +mB (s2

3 + s2
1 )+JB

22 +P+U, M56 = JA
23 −mBs2s3 + JB

23 −As2,

M66 = JA
33 +mB (s2

1 + s2
2 )+JB

33 +Mps2
2 +U, (18)

where JA
ij are the components of the tensor JA , and JB

ij (t) are the components of the tensor
JB (t). The expressions for JB

22, JB
23, JB

33 are

JB
22(t)= JB0

22 cos2 g+ JB0
33 sin2 g− JB0

23 sin 2g,

JB
23(t)= 1

2(J
B0
22 − JB0

33 ) sin 2g+ JB0
23 cos 2g,

JB
33(t)= JB0

22 sin2 g+ JB0
33 cos2 g+ JB0

23 sin 2g.

The quantities Mp , A, P, S, W and U used in equation (18) were defined in equation (14).
The matrix coefficient D(t) associated with the velocity vector will be

0 0 0 0 B 0

0 0 0 −B 0 0

0 0 0 0 0 0
D(t)=G

G

G

G

G

K

k

0 −B 0 2E 0 −L
G
G

G

G

G

L

l

+G(t)+C, (19)

B 0 0 0 J� B22 +2E J� B23 − s2B

0 0 0 −L J� B32 − s2B J� B33
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where the additional term G(t) arises from 1TB /1qj ( j=5, 6) and will be presented below.
The quantities B, E and L used in equation (19) were defined in equation (14). Matrix C
(assumed to be constant) reflects the contribution of the viscous damping in the mounts.

Below the assumptions which were made in the process of the derivation of term G(t)
are presented. These assumptions allow the obtained matrices M and D to be independent
of generalized co-ordinates.

In the calculation of

d
dt 01TB

1q̇j 1 ( j=5, 6),

the assumption that the angular displacements f1, f2 and f3 are small is used, so the second
term (components Fik ) in equation (5) are neglected in comparison with components Tik ;
i.e., the transformation matrix R is assumed to be a function of g only. However, in the
calculation 1TB /1qj , ( j=5, 6) this term (matrix F) is taken into account; i.e., using
equation (8),

1TB

1qj
= 1

2[v q̇5 q̇6]
1JB

1qj
[v q̇5 q̇6]T, j=5, 6,

where (using equation (7))

1JB

1qj
=

1RT

1qj
JB0R+RTJB0

1R
1qj

, j=5, 6,

and where matrix R (when it is not under differentiation) is assumed to depend only on
g. Therefore the calculation of the term 1TB /1q5 yields

1TB

1q5
= 1

2(G
(5)
11 v

2 +2vG(5)
12 q̇5 +2vG(5)

13 q̇6),

where the terms containing q̇5q̇5, q̇5q̇6 and q̇6q̇6 have been neglected in comparison with the
terms containing q̇5v , q̇6v and v2. Analogously,

1TB

1q6
= 1

2(G
(6)
11 v

2 +2vG(6)
12 q̇5 +2vG(6)

13 q̇6),

where

G(5)
12 = 1

2 sin 2g(JB0
22 − JB0

33 )+JB0
32 cos 2g, G(6)

13 = 1
2 sin 2g(JB0

33 − JB0
22 )−JB0

32 cos 2g,

G(5)
13 =−JB0

11 + JB0
22 sin2 g+ JB0

33 cos2 g+ JB0
32 sin 2g,

G(6)
12 = JB0

11 − JB0
22 cos2 g− JB0

33 sin2 g+ JB0
32 sin 2g.

Therefore, the additional matrix G, which can be called a gyroscopic matrix, will be
expressed as

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0
G(t)=G

G

G

G

G

K

k

0 0 0 0 0 0
G
G

G

G

G

L

l

.

0 0 0 0 −vG(5)
12 −vG(5)

13

0 0 0 0 −vG(6)
12 −vG(6)

13
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Figure 4. The assumed location of the mounts.

One can see that with an axisymmetric body rotating about the axis of symmetry, the
terms G(5)

12 =G(6)
13 =0 and G(5)

13 =−G(6)
12 , which yields a skew-symmetric addition to the

velocity matrix D, but in the general case when the body is not axisymmetric this addition
to the velocity matrix will not be skew-symmetric.

Now consider the generalized forces Qj in equation (16), or vector Q(t)= [Q1, . . . , Q6]T

in equation (17). One contribution to these generalized forces are the forces arising from
interaction of body A with the mounts (Figure 1). The location of the mounts is assumed
as shown in Figure 4; i.e., with a two-plane symmetry. Point A is the mass centre of the
engine framework, and k3, k2, k1 are elastic springs parallel to axes e1, e2, e3 respectively.
Note that some dashpot elements are in general assumed to be present as well. However,
the derivation of the viscous damping matrix C is analogous to the derivation of the
stiffness matrix; i.e., to obtain matrix C in the final form of the stiffness matrix, coefficients
k3, k2, k1 should be replaced by the corresponding dashpot coefficients.

Each of the mounts will be modelled as a combination of three elastic uniaxial elements.
The relation between the generalized co-ordinates qi and generalized forces arising from
forces and moments (we denote them as vector QM) transmitted through the mounts to
the engine framework can be written as

QM =−Kq, (20)

where matrix K will be called the stiffness matrix. To derive this matrix, the definition of
generalized forces is used. According to this definition, for a system with N points at which
the external forces are applied, the generalized force will be [8]

Qj = s
N

k=1

1rk

1qj
· Fk , (21)

where rk is the radius vector of the point k, and Fk is the external force vector acting at
the point k.

Given generalized co-ordinates q=[q1, . . . , q6], the following resulting forces and
moments (with respect to the axes e1, e2, e3) are transmitted from the mounts to the engine
framework:

Fx =−4k3q1 +4k3Hq5, Fy =−4k2q2 −4k2Hq4, Fz =−4k1q3,

MxA =−4k2Hq2 −4(k2H2 + k1A2
1 )q4, MyA =−4(k1A2

2 + k3H2)q5 +4k3Hq1,

MzA =(−4k2A2
2 −4k3A2

1 )q6,
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where the index A means that the moments are calculated with respect to the axes passing
through the point A. Now one can calculate the generalized forces contributed from the
mounts using equation (21); namely, for this case the components of the vector QM will
be

QM
1 =Fx , QM

2 =Fy , QM
3 =Fz ,

QM
4 =MxA , QM

5 =MyA , QM
6 =MzA .

From these expressions, the stiffness matrix K mentioned in equation (20) can be obtained.
It will be symmetric with the components

K11 =4k3, K12 =K13 =K14 =K16 =0, K15 =−4k3H,

K22 =4k2, K23 =K25 =K26 =0, K24 =4k2H,

K33 =4k1, K34 =K35 =K36 =0,

K44 =4(k2H2 + k1A2
1 ), K45 =K46 =0,

K55 =4(k1A2
2 + k3H2), K56 =0, K66 =4k2A2

2 +4k3A2
1 . (22)

Note that the generalized force contribution from gravity does not depend upon
the generalized co-ordinates. The same situation exists regarding the generalized force
contributions from the gas pressure in the cylinders, except that they will be functions
of time. Their derivation is straightforward and is omitted here. Also note that
modelling of mounts in the form of springs (bar elements) is not a unique approach which
can be appropriate. In general, the components of stiffness matrix K can be obtained
through a finite element model, or can be obtained analytically, but using other element;
e.g., beam elements. Also, the assumption of two-plane symmetry (Figure 4) can be
dropped.

Now having collected the terms resulting from equation (16) which depend on
generalized co-ordinates, velocities and accelerations on the left side of the equations and
having transferred all the other terms to the right side, the equation of motion of the
engine–mount system in matrix form can be written as

M(t)q̈+D(t)q̇+Kq=F(t), (23)

where matrices M, D and K were given respectively by equations (18), (19) and (22). Note
that matrices M and D are periodic functions of time: M(t)=M(t+T), D(t)=D(t+T)
and T=2p/v.

The right side of equation (23) will be

F(t)= [F1(t) F2(t) · · · F6(t)]T,

where

F1(t)= s
Ncyl

j=1

F gas
jx (t), F2(t)=mBrv2 cos vt+ s

Ncyl

j=1

F gas
jy (t),

F3(t)=mBrv2 sin vt−(mA +mB +Mp )g− s
Ncyl

i=1

mpiv̇Gri + s
Ncyl

j=1

F gas
jz (t),
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F4(t)=−mBrs3v
2 cos vt+mBrs2v

2 sin vt− s
Ncyl

i=1

mpis2v̇Gri + s
Ncyl

j=1

MxA [F gas
j (t)],

F5(t)= 1
2G

(5)
11 v

2 − J� B12(t)v−mBrs1v
2 sin vt+ s

Ncyl

i=1

mpia1i v̇Gri + s
Ncyl

j=1

MyA [F gas
j (t)],

F6(t)= 1
2G

(6)
11 v

2 − J� B13(t)v+mBrs1v
2 cos vt+ s

Ncyl

j=1

MzA [F gas
j (t)], (24)

where vGri is given by equation (12), and

1
2G

(5)
11 = JB0

12 sin g+ JB0
13 cos g, 1

2G
(6)
11 =−JB0

12 cos g+ JB0
13 sin g.

F gas
jx , F gas

jy and F gas
jz are the X, Y and Z projections of the resulting gas force in the jth

cylinder, and MxA [F gas
j ], MyA [F gas

j ] and MzA [F gas
j ] are the resulting moments of the gas forces

in the jth cylinder with respect to the axes X, Y and Z passing through the point A. The
expressions for J� B12, J� B13 are obtained by differentiation of

JB
12 = JB0

12 cos g− JB0
13 sin g, JB

13 = JB0
12 sin g+ JB0

13 cos g.

Remark 1. Note that forces and moments related with the gas pressure should be only
taken into account when there is a gradient of pressure in the combustion chamber. If the
pressure is uniformly distributed inside the chamber at each instant of time, then the
resulting force is zero at each instant of time, and all terms with superscript ‘‘gas’’ in the
right side of equation (24) vanish.

Remark 2. Note that for some engines, e.g., slow, or medium speed marine engines,
there is an intermediate shaft which joins the crankshaft and the propeller. In the dynamic
model considered here the interaction between the crankshaft and the intermediate shaft
is reduced to a torque moment (Mx ) upon the assumption that a flexible coupling will
minimize all other forces and moments of interaction. Therefore its contributions to the
generalized forces are neglected. The moment Mx does not contribute into the generalized
forces (21), because the rotation angle of the crankshaft is prescribed g=vt+f0; i.e., g

is not considerd as a generalized co-ordinate.

3. INVESTIGATION OF PARAMETRIC RESONANCE

Consider a general equation

M(t)q̈+D(t)q̇+Kq=0, (25)

where matrices M and D are of order n, and T-periodic, and q is n×1 vector. In general,
K can be T-periodic as well.

A general theory of linear differential equations with periodic coefficients [7] allows a
treatment of equations like equation (25). To investigate parametric resonance phenomena
(dynamic instability) it is sufficient to consider the conditions that give rise to unbounded
solutions q(t) of equation (25).
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Equation (25) can be represented in equivalent state space form as

A(t)X� +B(t)X=0,

where

A=$D
M

M
0 % , B=$K0 0

−M% , X=$qq̇% ,

or, in abbreviated form,

X� =P(t)X, (26)

where P=−A−1B, a 2n×2n matrix, and P(t+T)=P(t). Note also that matrix A is
non-singular, upon the presumption that the mass matrix M is non-singular for all
tW[0, T].

Now consider X as a 2n×2n matrix as well. Assuming the initial conditions X(0)= I,
the matrix function X(t) will be called a matrix of fundamental solutions (or matrizant),
and the matrix X(T) will be called the monodromy matrix.

According to the Floquet–Lyapunov theorem [7], the matrix of fundamental solutions
can be expressed as

X(t)=S(t) etR,

where S(0)= I, R=(1/T) ln X(T), S(t+T)=S(t). Eigenvalues of R, ai , are called
characteristic exponents, and eigenvalues of X(T), bi , are called multipliers of the system.
Note the relation between them:

bi =eaiT, i=1, 2n.

Therefore X(T), the monodromy matrix (namely its eigenvalues), yields all of the
information required to analyze the stability of trivial solutions of equation (26), and
consequently of equation (25), namely [7]: (1) all solutions bounded on [0, a], if multipliers
are inside, or on the unit circle (the latest case with simple elementary divisors); (2)
asymptotic stability, if multipliers are inside of the unit circle; (3) instability of the solution,
if at least one multiplier is either outside the unit circle, or on the unit circle with a multiple
elementary divisor.

There are several methods to obtain regions of stability and instability for systems
described by differential equations with periodic coefficients. For example, for the Mathieu
equation such methods as straightforward expansion (in power series of the parameter),
the method of strained parameters, Whittakers’s method and the method of multiple scales
are described in the literature [11, 7, 13].

In this study it is proposed to conduct the stability analysis by obtaining the eigenvalues
of the monodromy matrix X(T). Note that in the case of a general system of coupled
differential equations with periodic coefficients determination of the matrix of fundamental
solutions X(t) is not a trivial task. Here it is proposed to conduct a numerical integration
on the interval [0, T], for equation (26) to obtain X(T), starting from X(0)= I. An explicit
four-stage Runge–Kutta method will be used as a numerical integrator.

At first, for illustration purposes, a rotor–mount system with a single degree of freedom
is considered.

3.1.      

An example of a mechanical system is shown in Figure 5, where there is a rotor (body
B) rotating about the axis b–b and the framework (body A) is allowed to rotate about axis



B A

bb

e3

e1 e2

A q5

a ω a

e3

e1
e2

.   . . 156

Figure 5. An example of a SDOF system.

a–a which passes through the mass centre of the framework (point A). The angle of
rotation q5 is assumed to be very small. The framework (body A) is attached to the ground
by elastic springs which create the rotational stiffness denoted by K55.

The equation of motion for this system is obtained from the general equation (23) by
constraining all degrees of freedom except q5 and assuming that Mp =0 (no pistons).
Assume also that the mass center of body A coincides with point D (see Figure 2). Recall
that point D is the projection of the mass centre of body B on the axis of the crankshaft
(in this example rotor) rotation.

Then the motion of this system (with forcing functions set to zero) can be described by
the following equation:

(1− o sin2 vt)q̈5 − 3
2ov sin 2vtq̇5 + l2q5 =0, (27)

with parameters

o=
JB0

22 − JB0
33

JA
22 + JB0

22
, l=zK55/(JA

22 + JB0
22 ), (28)

where JB0
22 and JB0

33 are components of the tensor of moments of inertia defined with respect
to the axes g1, g2, g3 rigidly connected to the body B. From equation (28) it follows that
oQ 1, because JB0

22 q 0, JB0
33 q 0 and JA

22 e 0.
The rigidly connected system g1, g2, g3 is chosen in the following way. The axis g1 is taken

parallel to e1. As far as, g2, g3 are concerned, they are taken in such a way that the
components JB0

23 = JB0
32 =0. Without loss of generality, it also assumed that, at the instant

t=0, bases g1, g2, g3 and e1, e2, e3 coincide.
Note that the unbalance radius r that contributes to the external forcing function does

not appear in equation (27), because it is not involved in consideration of the homogeneous
solutions.

One can rewrite equation (27) using a new variable: g=vt; thus t= g/v: i.e., t can be
considered as function of g, t= t(g). Then q5(t)= q5(g/v)= q̃5(g) and

q̃'5 (g)= q̇5
1
v

, q̃05 (g)= q̈5
1
v2 .

Thus

q̇5 =vq̃'5 (g), q̈5 =v2q̃05 (g).
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Substituting this into equation (27), one obtains

(1− o sin2 g)v2q̃05 (g)− 3
2ov

2 sin 2gq̃'5 (g)+ l2q̃5(g)=0.

Denoting d= l2/v2, one can write

(1− o sin2 g)q̃05 (g)− 3
2o sin 2gq̃'5 (g)+ dq̃5(g)=0. (29)

Note that the coefficients of this equation have a period p. This equation was
numerically integrated and the monodromy matrix X(p) (2×2 in state space form) was
obtained. Then its eigenvalues (multipliers) were evaluated. Regions of stability and
instability (dark areas) are presented in the plane of the non-dimensional parameters d and
o in Figure 6. For the unstable (dark) area the absolute value of one of the multipliers was
q1.

One can see that the greater the parameter =o=, which reflects nonsymmetry of the body
B, the wider the frequency region is where resonance can occur. Note that the line d=1
corresponds to the frequency rotation v= l, where l is the natural frequency of the
system.

3.2.     – 

The parametric resonance analysis of a six-degree-of-freedom engine–mount system will
be conducted on the basis of equations (23), where the right side is assumed to be zero,
because homogeneous solutions are of interest in this section. The equations (23) will be
represented in state space form (26). Thus there will be a system of 12 coupled differential
equations with periodic coefficients.

The input data for an example of an engine–mount system (a medium-speed diesel type
multi-cylinder engine was considered [5]) are presented in Table 1. It is assumed in this
section that no damping properties are present in the system which means that the viscous
damping matrix C=0. This represents the case when parametric resonance arises more
easily. The stiffnesses of the springs (Figure 4) were assumed to be the same:
k1 = k2 = k3 =0·206E+07 N/m.

Without loss of generality, at the instant when t=0, it is assumed that the unbalance
radius has zero phase, i.e., it is oriented as the axis Y (the vector e2 in Figure 2). The phase
angles of the pistons are determined according to the configuration of the cranks and with
respect to the unbalance radius direction. The components of JB0

ij are calculated in the
co-ordinate system (fixed with the crankshaft) parallel to the reference system (at t=0)

Figure 6. Regions of stability and instability for the SDOF system (Figure 5).
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T 1

Input parameters of the engine–mount system. Units: length [m], mass [kg], angle [degree],
JA

ij , JB0
ij [kg m2]

mA mB s1 s2 s3 l l2 Ncyl mp A1 A2 H

12 200 4100 0 0 0 0·2286 1·162 6 81 0·72 1·8 1·2

f1 f2 f3 f4 f5 f6 gpo1 gpo2 gpo3 gpo4 gpo5 gpo6

1·6 0·96 0·32 −0·32 −0·96 −1·6 0 −120 −240 −240 −120 0

JA
11 JA

12 JA
13 JA

22 JA
23 JA

33 JB0
11 JB0

12 JB0
13 JB0

22 JB0
23 JB0

33

12 000 0 0 17 100 0 17 100 300 0 0 8500 0 8500

and taken at the crankshaft’s centre of mass. The components of JA are taken at the centre
of mass (point A) and in the system parallel to the reference system (they are assumed
constant).

A numerical integration on the interval [0, T], for the equation of motion represented
in the state space form (26) was produced and X(T) (12×12 monodromy matrix) was
obtained. An explicit four-stage Runge–Kutta method was used as a numerical integrator.
The eigenvalues bi , i=1, 12, of the monodromy matrix are presented below for two
examples.

In the first example (the crankshaft with JB0
22 = JB0

33 ) all eigenvalues (Table 2) are on the
unit circle and not repeated, which means a stable case; i.e., the homogeneous solutions
of equation (23) are bounded.

For the second example, just one parameter was changed in the input data (Table 1);
namely, a crankshaft with JB0

33 =5667 kg m2 (asymmetry ratio JB0
22 /JB0

33 =1·5) was considered
which gives a greater contribution of the time-dependent components of matrices M and
D (see equations (18) and (19)). For this example one can see that absolute values of some
eigenvalues are greater than 1 (outside the unit circle), which means instability, eventually
leading to unboundness of the homogeneous solutions. In other words, parametric
resonance arises. The numerical integrations were produced with different step sizes to
verify the obtained values of the monodromy matrix X(T), and consequently its

T 2

Eigenvalues of monodromy matrix (multipliers); stable and unstable cases

First example Second example
ZXXXXXXXXCXXXXXXXXV ZXXXXXXXXCXXXXXXXXV
Real part Imaginary part Absolute value Real value Imaginary part Absolute value

0·9628309 0·2701047 0·9999999 1·2783248 0·0000000 1·2783248
0·9628309 −0·2701047 0·9999999 −0·6836327 0·7298257 0·9999999

−0·6058155 0·7956047 0·9999999 −0·6836327 −0·7298257 0·9999999
−0·6058155 −0·7956047 0·9999999 −0·9816487 0·1906977 1·0000000
−0·9852860 0·1709135 0·9999999 −0·9816487 −0·1906977 1·0000000
−0·9852860 −0·1709135 0·9999999 0·7822736 0·0000000 0·7822736

0·2286707 0·9735036 0·9999999 0·2286707 0·9735036 0·9999999
0·2286707 −0·9735036 0·9999999 0·2286707 −0·9735036 0·9999999

−0·2279639 0·9736695 1·0000000 −0·2279639 0·9736695 1·0000000
−0·2279639 −0·9736695 1·0000000 −0·2279639 −0·9736695 1·0000000
−0·6012910 0·7990300 0·9999999 −0·6012910 0·7990300 0·9999999
−0·6012910 −0·7990300 0·9999999 −0·6012910 −0·7990300 0·9999999
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eigenvalues (multipliers). The results in Table 2 are presented for the engine’s rotation
frequency, 5·5 Hz (T=0·18182 s).

The influence of the asymmetry parameter of the crankshaft,

o=
JB0

22 − JB0
33

JB0
22

,

on the dynamic instability of the system was then investigated. Namely, the component
JB0

22 was fixed equal to 8500 kg m2 (see Table 1), and component JB0
33 was changed. Three

values of the parameter o were chosen, o=0; 1/5 and 1/3.
The frequency range [0, 10] Hz was numerically tested in terms of evaluation of the

maximum value of the multipliers for a discrete set of frequencies. The frequency increment
was equal to 0·025 Hz. For each frequency the maximum absolute value of the multipliers
(which will be further referred to as the ‘‘instability factor’’) was computed. We denote
this function as j(v), so according to the mentioned definition the instability factor is

j(v)=Max
i=1,12

>bi (v)>.

With o=0 the numerical results were j(v)=1 for any vW[0, 10]; i.e., the system is stable.
The obtained graphs of j(v) for o=1/5 and 1/3 are presented in Figure 7, where portions
of the interval [0, 10] not shown have j(v)=1.

One can see that the greater the parameter o (i.e., the greater contribution of the
time-dependent components in matrices M and D) the greater is the instability factor. The
width of instability intervals increases with the increase of o as well. The homogeneous
solutions for these instability intervals will be unbounded.

As an illustration of the character of an unbounded homogeneous solution, the angular
displacement q6 (or f3) as a function of time is shown in Figure 8. For this example, zero
initial conditions, except for q̇6(0)=f� 3(0)=1, were prescribed. This graph corresponds
to the maximum instability factor j=1·2808 at the frequency v=5·4836 Hz, and o=1/3
(see Figure 7).

Note that the quantity o (the asymmetry parameter of the crankshaft) can be particularly
large in the case of small engines (with one, or two cylinders), because of their arrangement
of cranks. Also note that the reciprocating parts (pistons) also yield contributions to
time-dependent components of the matrices M and D, hence also can affect the instability
factor. The investigation of this effect will be a subject of future analysis.

Figure 7. Instability factors: - - - -, o=1/5; ——, o=1/3.
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Figure 8. The angular displacement f3 of the unbounded homogeneous solution; instability factor j=1·2808.

4. SUMMARY

A formulation of a dynamic model of an engine–mount system has been developed. The
formulated equation of motion contains the time-periodic mass and velocity matrices,
which may lead to such phenomena as parametric resonance (dynamic instability). The
investigation of the parametric resonance conditions on an example of an engine–elastic
mount system has shown that in the case of a specific crankshaft (when certain diagonal
components of the tensor of moments of inertia are non-equal), instability can occur at
certain rotation frequencies.

Application of the developed model to some rotor–mount systems is also possible. The
numerical results for a particular case of a rotor–mount system have shown that there is
a domain in the space of system’s parameters which yields dynamic instability

In general, one can say that when time-dependent components in the mass and velocity
matrices become larger, then more possibilities exist for instability to take place. A full
parametric analysis of the effect of different input parameters on the system’s stability can
be viewed as future work.
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APPENDIX A: DERIVATION OF MATRIX R

The vectors i1, i2, i3 of the auxiliary rotating basis (Figure 1) are expressed in terms of
the ground-basis vectors as

&i1i2i3'= &100 0
cos g

−sin g

0
sin g

cos g'&e1

e2

e3', (30)

where g=vt+f0 (angle of crankshaft rotation).
Assume that at the moment t (or for the angle g) the engine framework has the angular

displacements f1, f2, f3; then the basis g1, g2, g3 (rigidly fixed with the crankshaft) is
actually the basis i1, i2, i3, which is given the angular displacements f1, f2, f3; i.e.,

gk = ik + s
3

n=1

Dikn , k=1, 2, 3, (31)

where Dikn is the change to the ik basis vector due to its rotation about the basis vector
en . These changes are computed as follows (note that angles f1, f2, f3 are assumed to be
very small):

Di11 =f1e1 × i1 = ne1

f1

1

e2

0
0

e3

0
0 n=0,

and, analogously,

Di12 =f2e2 × i1 = ne1

0
1

e2

f2

0

e3

0
0 n=−f2e3,

Di13 =f3e3 × i1 = ne1

0
1

e2

0
0

e3

f3

0 n=f3e2,

Di21 =f1e1 × i2 = ne1

f1

0

e2

0
cos g

e3

0
sin gn=f1 cos ge3 −f1 sin ge2,
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Di22 =f2e2 × i2 = ne1

0
0

e2

f2

cos g

e3

0
sin gn=f2 sin ge1,

Di23 =f3e3 × i2 = ne1

0
0

e2

0
cos g

e3

f3

sin gn=−f3 cos ge1,

Di31 =f1e1 × i3 = ne1

f1

0

e2

0
−sin g

e3

0
cos gn=−f1 sin ge3 −f1 cos ge2,

Di32 =f2e2 × i3 = ne1

0
0

e2

f2

−sin g

e3

0
cos gn=f2 cos ge1,

Di33 =f3e3 × i3 = ne1

0
0

e2

0
−sin g

e3

f3

cos gn=f3 sin ge1.

Therefore, substituting the obtained Diik in equation (31), one can rewrite it in matrix
form, as

&g1

g2

g3'= &i1i2i3'+ & 0
f2 sin g−f3 cos g

f3 sin g+f2 cos g

f3

−f1 sin g

−f1 cos g

−f2

f1 cos g

−f1 sin g'&e1

e2

e3',
and substituting equation (30) in the above expression one obtains

&g1

g2

g3'= & 1
f2 sin g−f3 cos g

f3 sin g+f2 cos g

f3

cos g−f1 sin g

−sin g−f1 cos g

−f2

sin g+f1 cos g

cos g−f1 sin g'&e1

e2

e3'
or, in abbreviated form,

gi =Rikek , i=1, 2, 3,

where the matrix R will be called the transformation matrix.


